http://SaturnianCosmology.Org/ mirrored file For complete access to all the files of this collection see http://SaturnianCosmology.org/search.php ========================================================== Oxocarbon From Wikipedia, the free encyclopedia Jump to: navigation , search An *oxocarbon* or *oxide of carbon* is an inorganic compound consisting only of carbon and oxygen .^[1] ^[2] The simplest and most common oxocarbons are carbon monoxide (CO) and carbon dioxide (CO_2 ). Many other stable or metastable oxides of carbon are known, but they are rarely encountered, such as carbon suboxide (C_3 O_2 or O=C=C=C=O) and mellitic anhydride (C_12 O_9 ). Chemfm carbon monoxide 2 2.svg Chemfm carbon dioxide.svg Chemfm carbon suboxide.svg Chemfm mellitic anhydride.svg CO Carbon monoxide CO_2 Carbon dioxide C_3 O_2 Carbon suboxide C_12 O_9 Mellitic anhydride While textbooks will often list only the first three, and rarely the fourth, a large number of other oxides are known today, most of them synthesized since the 1960s. Some of these new oxides are stable at room temperature. Some are metastable or stable only at very low temperatures, but decompose to simpler oxocarbons when warmed. Many are inherently unstable and can be observed only momentarily as intermediates in chemical reactions or are so reactive that they can exist only in the gas phase or under matrix isolation conditions. The inventory of oxocarbons appears to be steadily growing. The existence of graphene oxide and of other stable polymeric carbon oxides with unbounded molecular structures^[3] ^[4] suggests that many more remain to be discovered. Contents [hide ] * 1 Overview * 2 General structure * 3 Linear carbon dioxides * 4 Linear carbon monoxides * 5 Radialene-type cyclic polyketones * 6 New oxides * 7 Polymeric carbon oxides * 8 See also * 9 References [edit ] Overview Carbon dioxide (CO_2 ) occurs widely in nature, and was incidentally produced by humans since pre-historical times, by the combustion of carbon-containing substances and fermentation of foods such as beer and bread . It was gradually recognized as a chemical substance, formerly called /spiritus sylvestre/ ("forest spirit") or "fixed air", by various chemists in the 17th and 18th centuries. Carbon monoxide may occur in combustion, too, and was used (though not recognized) since antiquity for the smelting of iron from its ores . Like the dioxide, it was described and studied in the West by various alchemists and chemists since the Middle Ages. Its true composition was discovered by William Cruikshank in 1800. Carbon suboxide was discovered by Brodie in 1873, by passing electric current through carbon dioxide.^[5] The fourth "classical" oxide, mellitic anhydride (C_12 O_9 ), was apparently obtained by Liebig and Wohler in 1830 in their study of mellite ("honeystone") , but was characterized only in 1913, by Meyer and Steiner.^[6] ^[7] ^[8] Brodie also discovered in 1859 a sixth compound called graphite oxide , consisting of carbon and oxygen in ratios varying between 2:1 and 3:1; but the nature and molecular structure of this substance remained unknown until a few years ago, when it was renamed graphene oxide and became a topic of research in nanotechnology .^[3] Notable examples of unstable or metastable oxides that were detected only in extreme situations are dicarbon monoxide radical (:C=C=O), carbon trioxide (CO_3 ),^[9] , carbon tetroxide (CO_4 ),^[10] ^[11] and 1,2-dioxetanedione (C_2 O_4 ).^[12] ^[13] Some of these reactive carbon oxides were detected within molecular clouds in the interstellar medium by rotational spectroscopy .^[14] Many hypothetical oxocarbons have been studied by theoretical methods but have yet to be detected. Examples include oxalic anhydride (C_2 O_3 or O=(C_2 O)=O), ethylene dione (C_2 O_2 or O=C=C=O) ^[15] and other linear or cyclic polymers of carbon monoxide (-CO-)_/n/ (polyketones ),^[16] and linear or cyclic polymers of carbon dioxide (-CO_2 -)_/n/ , such as the dimer 1,3-dioxetanedione (C_2 O_4 )^[17] and the trimer 1,3,5-trioxanetrione (C_3 O_6 ).^[17] ^[18] Chemfm oxalic anhydride.svg Chemfm 1 2 dioxetanedione.svg Chemfm 1 3 dioxetanedione.svg Chemfm 1 3 5 trioxanetrione.svg Chemfm ethylene dione.svg C_2 O_3 Oxalic anhydride C_2 O_4 1,2-Dioxetane- dione C_2 O_4 1,3-Dioxetane- dione C_3 O_6 1,3,5-Trioxane- trione C_2 O_2 Ethylene dione [edit ] General structure Normally carbon is tetravalent while oxygen is divalent , and in most oxocarbons (as in most other carbon compounds) each carbon atom may be bound to four other atoms, while oxygen may be bound to at most two. Moreover, while carbon can connect to other carbons to form arbitrarily large chains or networks, chains of three or more oxygens are rarely if ever observed. Thus the known electrically neutral oxocarbons generally consist of one or more carbon skeletons (including cyclic and aromatic structures) connected and terminated by oxide (-O-, =O) or peroxide (-O-O-) groups. Carbon atoms with unsatisfied bonds are found in some oxides, such as the diradical C_2 O or :C=C=O; but these compounds are generally too reactive to be isolated in bulk.^[19] Loss or gain of electrons can result inmonovalent negative oxygen (-O^− ), trivalent positive oxygen (≡O^+ ), or trivalent negative carbon (≡C^− ). The last two are found in carbon monoxide, ^− C≡O^+ .^[20] Negative oxygen occurs in most oxocarbon anions . [edit ] Linear carbon dioxides One family of carbon oxides has the general formula C_n O_2 , or O=(C=)_/n/ O — namely, a linear chain of carbon atoms, capped by oxygen atoms at both ends. The first members are * CO_2 or O=C=O, the well-known carbon dioxide. * C_2 O_2 or O=C=C=O, the extremely unstable ethylene dione .^[15] * C_3 O_2 or O=C=C=C=O, the metastable carbon suboxide or tricarbon dioxide. * C_4 O_2 or O=C=C=C=C=O, tetracarbon dioxide or 1,2,3-Butatriene-1,4-dione^[21] * C_5 O_2 or O=C=C=C=C=C=O, pentacarbon dioxide ,^[22] stable in solution at room temp. and pure up to -90°C.^[23] Some higher member of this family have been detected in trace amounts in low-pressure gas phase and/or cryogenic matrix experiments, specifically for /n/ = 7^[23] ^:p.97 and /n/ = 17, 19, and 21.^[24] ^:p.95 [edit ] Linear carbon monoxides Another family of oxocarbons are the linear carbon monoxides C_/n/ O. The first member, ordinary carbon monoxide CO, seems to be the only one that is stable in the pure state at room temperature. Photolysis of the linear carbon doxides in a cryogenic matrix leads to loss of CO, resulting in detectable amounts of even-numbered monoxides such as C_2 O, C_4 O,^[19] and C_6 O.^[23] The members up to /n/=9 have also been obtained by electrical discharge on gasous C_3 O_2 diluted in argon.^[25] The first three members have been detected in interstellar space.^[25] When /n/ is even, the molecules are believed to be in the triplet (cumulene -like) state, with the atoms connected by double bonds and an unfilled orbital in the first carbon — as in :C=C=O, :C=C=C=C=O, and, in general, :(C=)_/n/ =O. When /n/ is odd, the triplet structure is believed to resonate with a singlet (acetylene -type) polar state with a negative charge on the carbon end and a positive one on the oxygen end, as in ^− C≡C-C≡O^+ , ^− C≡C-C≡C-C≡O^+ , and, in general, ^− (C≡C-)_/n//2 C≡O^+ .^[25] Carbon monoxide itself follows this pattern: its predominant form is believed to be ^− C≡O^+ .^[20] [edit ] Radialene-type cyclic polyketones Another family of oxocarbons that has attracted special attention are the cyclic radialene -type oxocarbons C_/n/ O_/n/ or (CO)_/n/ .^[26] They can be regarded as cyclic polymers of carbon monoxide, or /n/-fold ketones of /n/-carbon cycloalkanes . Carbon monoxide itself (CO) can be regarded as the first member. Theoretical studies indicate that ethylene dione (C_2 O_2 or O=C=C=O) and cyclopropanetrione C_3 O_3 do not exist.^[15] ^[16] . The next three members — C_4 O_4 , C_5 O_5 , and C_6 O_6 — are theoretically possible, but are expected to be quite unstable,^[16] and so far they have been synthesized only in trace amounts.^[27] ^[28] Chemfm cyclopropanetrione.svg Chemfm cyclobutanetetrone.svg Chemfm cyclopentanepentone.svg Chemfm cyclohexanehexone.svg (CO)_3 Cyclopropane- trione (CO)_4 Cyclobutane- tetrone (CO)_5 Cyclopentane- pentone (CO)_6 Cyclohexane hexone On the other hand, the anions of these oxocarbons are quite stable, and some of them have been known since the 19th century.^[26] They are * C_2 O_2 ^2− , acetylenediolate (Weiss and Büchner, 1963),^[29] * C_3 O_3 ^2− , deltate (Eggerding and West, 1976),^[30] ^[31] * C_4 O_4 ^2− , squarate (Cohen and others, 1959),^[32] * C_5 O_5 ^2− , croconate (Gmelin, 1825),^[33] and * C_6 O_6 ^2− , rhodizonate (Heller, 1837).^[34] ^[35] The cyclic oxide C_6 O_6 also forms the stable anions of tetrahydroxybenzoquinone (C_6 O_6 ^4− ) and hexahydroxybenzene (C_6 O_6 ^6− ),^[36] The aromaticity of these anions has been studied using theoretical methods.^[37] ^[38] [edit ] New oxides Many new stable or metastable oxides have been synthesized since the 1960s, such as:s: * C_10 O_8 , benzoquinonetetracarboxylic dianhydride (Hammond, 1963).^[39] * C_6 O_6 , ethylenetetracarboxylic dianhydride , a stable isomer of cyclohexanehexone (Sauer and others, 1967).^[40] * C_12 O_12 or C_6 (C_2 O_4 )_3 , hexahydroxybenzene trisoxalate (Verter and Dominic, 1967); stable as a tetrahydrofuran solvate.^[41] * C_10 O_10 or C_6 O_2 (C_2 O_4 )_2 , tetrahydroxy-1,4-benzoquinone bisoxalate (Verter and others, 1968); stable as a tetrahydrofuran solvate.^[42] * C_8 O_8 or C_6 O_2 (CO_3 )_2 , tetrahydroxy-1,4-benzoquinone biscarbonate (Nallaiah, 1984); decomposes at about 45–53°C.^[43] * C_9 O_9 or C_6 (CO_3 )_3 , hexahydroxybenzene triscarbonate (Nallaiah, 1984); decomposes at about 45–53°C.^[43] * C_24 O_6 , a cyclic trimer of the biradical 3,4-dialkynyl-3-cyclobutene1,2-dione -C≡C-(C_4 O_2 )-C≡C- (Rubin and others, 1990);^[44] * C_32 O_8 , a tetramer of 3,4-dialkynyl-3-cyclobutene1,2-dione (Rubin and others, 1990);^[44] * C_4 O_6 , dioxane tetraketone or dimeric oxalic anhydride (Strazzolini and others, 1998); stable in Et_2 O at −30°C, decomposes at 0°C.^[45] * C_12 O_6 , hexaoxotricyclobutabenzene (Hamura and others, 2006)^[46] ^[47] Chemfm benzoquinonetetracarboxylic dianhydride.svg Chemfm ethylenetetracarboxylic dianhydride.svg Chemfm tetrahydroxy 1 4 benzoquinone bisoxalate.svg C_10 O_8 Benzoquinone- tetracarboxylic dianhydride C_6 O_6 Ethylene- tetracarboxylic dianhydride C_10 O_10 Tetrahydroxy- 1,4-benzoquinone bisoxalate Chemfm tetrahydroxy 1 4 benzoquinone biscarbonate.svg Chemfm dioxane tetraketone.svg Chemfm hexaphenol trisoxalate.svg C_8 O_8 Tetrahydroxy- 1,4-benzoquinone biscarbonate C_4 O_6 Dioxane tetraketone C_12 O_12 Hexahydroxybenzene trisoxalate Chemfm hexaphenol triscarbonate.svg Chemfm tris 3 4 dialkynyl 3 cyclobutene 1 2 dione.svg Chemfm tetrakis 3 4 dialkynyl 3 cyclobutene 1 2 dione.svg C_9 O_9 Hexahydroxybenzene triscarbonate C_24 O_6 Tris(3,4-dialkynyl- 3-cyclobutene- 1,2-dione) C_32 O_8 Tetrakis(3,4-dialkynyl- 3-cyclobutene- 1,2-dione) Chemfm hexaoxotricyclobutabenzene.svg C_12 O_6 Hexaoxotricyclo- butabenzene Many relatives of these oxides have been investigated theoretically, and some are expected to be stable, such as other carbonate and oxalate esters of tetrahydroxy-1,2-benzoquinone and of the rhodizonic, croconic, squaric, and deltic acids.^[16] [edit ] Polymeric carbon oxides Carbon suboxide spontaneously polymerizes at room temperature into a carbon-oxygen polymer , with 3:2 carbon:oxygen atomic ratio. The polymer is believed to be a linear chain of fused six-membered lactone rings, with a continuous carbon backbone of alternating single and double bonds. Physical measurements indicate that the mean number of units per molecule is about 5–6, depending on the formation temperature.^[4] ^[48] Chemfm poly carbon suboxide Ls.svg Chemfm poly carbon suboxide 1sHs.svg Chemfm poly carbon suboxide i 1sHs.svg Chemfm poly carbon suboxide sR.svg Terminating and repeating units of polymeric C_3 O_2 .^[4] Chemfm poly carbon suboxide Lb 1bHb bR.svg Chemfm poly carbon suboxide Lb 2bHb bR.svg Chemfm poly carbon suboxide Lb 3bHb bR.svg Chemfm poly carbon suboxide Lb 4bHb bR.svg Oligomers of C_3 O_2 with 3 to 6 units.^[4] Carbon monoxide compressed to 5 GPA in a diamond anvil cell yields a somewhat similar reddish polymer with a slightly higher oxygen content, which is metastable at room conditions. It is believed that CO disproportionates in the cell to a mixture of CO_2 and C_3 O_2 ; the latter forms a polymer similar to the one described above (but with a more irregular structure), that traps some of the CO_2 in its matrix.^[49] ^[50] . Another carbon-oxygen polymer, with C:O ratio 5:1 or higher, is the classical graphite oxide^[3] and its single-sheet version graphene oxide . [edit ] See also * Oxocarbon anion * Pseudo-oxocarbon anion [edit ] References 1. *^ * International Union of Pure and Applied Chemistry (1995). "Oxocarbons ". /Compendium of Chemical Terminology / Internet edition. 2. *^ * R. West, editor (1980), /Oxocarbons/. Academic Press, New York. 3. ^ ^/*a*/ ^/*b*/ ^/*c*/ William S. Hummers Jr., and Richard E. Offeman (1958), "Preparation of Graphitic Oxide". J. Am. Chem. Soc., 1958, 80 (6), 1339-1339 doi :10.1021/ja01539a017 4. ^ ^/*a*/ ^/*b*/ ^/*c*/ ^/*d*/ A. W. Snow, H. Haubenstock, N.-L. Yang (1978): "Poly(carbon suboxide). Characterization, Polymerization, and Radical Structure". Macromolecules, 11 (1), pp 77–86. doi :10.1021/ma60061a015 5. *^ * Brodie B. C. (1873). "Note on the Synthesis of Marsh-Gas and Formic Acid, and on the Electric Decomposition of Carbonic Oxide" . /Proceedings of the Royal Society (London)/ *21*: 245–247. doi :10.1098/rspl.1872.0052 . http://links.jstor.org/sici?sici=0370-1662%281872%2F1873%2921%3C245%3ANOTSOM%3E2.0.CO%3B2-J. 6. *^ * J. Liebig, F. Wöhler (1830), /Ueber die Zusammensetzung der Honigsteinsäure/ Poggendorfs Annalen der Physik und Chemie, vol. 94, Issue 2, pp.161–164. Online version accessed on 2009-07-08. 7. *^ * Meyer H, Steiner K (1913.). "Über ein neues Kohlenoxyd C_12 O_9 (A new carbon oxide C_12 O_9 )". /Berichte der Deutschen Chemischen Gesellschaft / *46*: 813–815. 8. *^ * Bugge (1914), /Chemie: En neues Kohenoxyd./ Review of Meyer and Steiner's discovery of C_12 O_9 . Naturwissenschaftliche Wochenschrift, volume 13/29, issue 12, 22 March 1914, p. 188. Online version accessed on 2009-07-09. 9. *^ * DeMore W. B., Jacobsen C. W. (1969). "Formation of carbon trioxide in the photolysis of ozone in liquid carbon dioxide". /Journal of Physical Chemistry/ *73* (9): 2935–2938. doi :10.1021/j100843a026 . 10. *^ * Laurence Y. Yeung, Mitchio Okumura, Jeffrey T. Paci, George C. Schatz, Jianming Zhang and Timothy K. Minton (2009), /Hyperthermal O-Atom Exchange Reaction O2 + CO2 through a CO4 Intermediate./ J. of the American Chemical Society, volume 131, issue 39, pages 13940–13942. doi :10.1021/ja903944k 11. *^ * Corey S. Jamieson, Alexander M. Mebel, Ralf I. Kaiser (2007). "Novel detection of the C-2v isomer of carbon tetraoxide (CO4)". /Chemical Physics Letters/ *440* (1–3): 105–109. doi :10.1016/j.cplett.2007.04.043 . 12. *^ * Herman F. Cordes, Herbert P. Richter, Carl A. Heller(1969), /Mass spectrometric evidence for the existence of 1,2-dioxetanedione (carbon dioxide dimer). Chemiluminescent intermediate./ J. Am. Chem. Soc., 1969, 91 (25), p 7209. doi :10.1021/ja01053a065 13. *^ * Richard Bos, Neil W. Barnett, Gail A. Dyson, Kieran F. Lim, Richard A. Russell and Simon P. Watson (2003), /Studies on the mechanism of the peroxyoxalate chemiluminescence reaction: Part 1. Confirmation of 1,2-dioxetanedione as an intermediate using 13C nuclear magnetic resonance spectroscopy/. Analytica Chimica Acta, Volume 502, Issue 2, 30 January 2004, Pages 141-147. doi :10.1016/j.aca.2003.10.014 14. *^ * H. M. Pickett E. A. Cohen B. J. Drouin J. C. Pearson (2003), /Submillimeter, Millimeter, and Microwave Spectral Line Catalog/. NASA /JPL , Online verstion accessed on 2009-07-11. 15. ^ ^/*a*/ ^/*b*/ ^/*c*/ Detlef Schröder; Christoph Heinemann, Helmut Schwarz, Jeremy N. Harvey, Suresh Dua, Stephen J. Blanksby, John H. Bowie (1998). "Ethylenedione: An Intrinsically Short-Lived Molecule". /Chemistry - A European Journal/ *4* (12): 2550–2557. doi :10.1002/(SICI)1521-3765(19981204)4:123.0.CO;2-E . 16. ^ ^/*a*/ ^/*b*/ ^/*c*/ ^/*d*/ Haijun Jiao and Hai-Shun Wu (2003), /Are Neutral Oxocarbons Stable?/ J. Org. Chem., volume 68, 1475-1479. doi :10.1021/jo026243m 17. ^ ^/*a*/ ^/*b*/ Errol Lewars(1996), /Polymers and oligomers of carbon dioxide: ab initio and semiempirical calculations/. Journal of Molecular Structure: THEOCHEM, Volume 363, Number 1, pp. 1–15 18. *^ * Matthew L. Shirel and Peter Pulay (1999), /Stability of Novel Oxo- and Chloro-Substituted Trioxanes/. J. Am. Chem. Soc., vol. 121 issue 37, pp 8544–8548. doi :10.1021/ja984451j 19. ^ ^/*a*/ ^/*b*/ Günter Maier and Hans Peter Reisenauer (2001), /Carbenes in Matrices: Specrospcopy, Structure, and Photochemical Behavior/. In Udo H. Brinker (ed.), /Advances in carbene chemistry/, page 135. Elsevier, 332 pages. ISBN 0444508929 , 9780444508928 20. ^ ^/*a*/ ^/*b*/ W. Kutzelnigg (2002). /Einführung in die Theoretische Chemie/. Wiley-VCH. ISBN 3-527-30609-9 . 21. *^ * Günther Maier, Hans Peter Reisenauer, Heinz Balli, Willy Brandt, Rudolf Janoschek (1990): "C_4 O_2 (1,2,3-Butatriene-1,4-dione), the First Dioxide of Carbon with an Even Number of C Atoms". Angewandte Chemie (International Edition in English), volume 29, issue 8 , Pages 905–908. 22. *^ * Günther Maier, Hans Peter Reisenauer, Ulrich Schäfer, and Heinz Balli (1988). "C5O2 (1,2,3,4-Pentatetraene-1,5-dione), a New Oxide of Carbon". /Angewandte Chemie International Edition in English/ *27* (4): 566–568. doi :10.1002/anie.198805661 . 23. ^ ^/*a*/ ^/*b*/ ^/*c*/ Frank W. Eastwood (1997), /Gas Phase Pyrolytic Methods for the Preparation of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds./. In Yannick Vallée/Gas Phase Reactions in Organic Synthesis/.CRC Press; ISBN 9056990810 , 9789056990817 24. *^ * Roman Reusch (2005), /Absorptionsspektroskopie von langen Kohlenstoff-Kettenmolekülen und deren Oxide in kryogenen Matrizen./ Thesis, Ruprecht-Karls-Universität Heidelberg (in German) 25. ^ ^/*a*/ ^/*b*/ ^/*c*/ Teruhiko Ogata and Yoshio Tatamitani (2008), /The Simplest Linear-Carbon-Chain Growth by Atomic-Carbon Addition and Ring Opening Reactions/. J. Phys. Chem. A, volume 112 issue 43, pp. 10713–10715. doi :10.1021/jp806725s 26. ^ ^/*a*/ ^/*b*/ Gunther Seitz, Peter Imming (1992). "Oxocarbons and pseudooxocarbons". /Chem. Rev./ *92* (6): 1227–1260. doi :10.1021/cr00014a004 . 27. *^ * Detlef Schröder,; Helmut Schwarz, Suresh Dua, Stephen J. Blanksby and John H. Bowie (May 1999). "Mass spectrometric studies of the oxocarbons CnOn (n = 3–6)". /International Journal of Mass Spectrometry/ *188* (1–2): 17–25. doi :10.1016/S1387-3806(98)14208-2 . 28. *^ * Richard B. Wyrwas and Caroline Chick Jarrold (2006), /Production of C6O6- from Oligomerization of CO on Molybdenum Anions/. J. Am. Chem. Soc. volume 128 issue 42, pages 13688–13689. doi :10.1021/ja0643927 29. *^ * Werner Büchner, E. Weiss (1963) /Zur Kenntnis der sogenannten «Alkalicarbonyle» I Die Kristallstruktur des Kalium-acetylendiolats, KOC≡COK/. Helvetica Chimica Acta, Volume 46 Issue 4, Pages 1121–1127. doi :10.1002/hlca.19630460404 30. *^ * David Eggerding and Robert West (1976), /Synthesis and Properties of Deltic Acid (Dihydroxycyclopropenone) and the Deltate Ion/ J. American Chemical Society, volume 98, p, 3641–3644. doi :10.1021/ja00428a043 31. *^ * David Eggerding, Robert West (1975), /Synthesis of Dihydroxycyclopropenone (Deltic Acid)/. J. American Chemical Society, volume 97 issue 1, pp 207–208. doi :10.1021/ja00834a047 32. *^ * Sidney Cohen, John R. Lacher, Joseph D. Park (1959) /Diketocyclobutanediol/. J. American Chemical Society, Vol. 81, p. 3480. doi :10.1021/ja01522a083 33. *^ * Leopold Gmelin (1825), /Ueber einige merkwürdige, bei der Darstellung des Kaliums nach der Brunner'schen Methode, erhaltene Substanzen/. Poggendorfs Annalen der Physik und Chemie, volume 4, p. 31. Online version accessed on 2009-07-08. 34. *^ * Johann Florian Heller (1837), /Die Rhodizonsäure, eine aus den Produkten der Kaliumbereitung gewonnene neue Säure, und ihre chemischen Verhältnisse/, Justus Liebigs Annalen der Pharmacie, volume 24, issue 1, pp. 1–16. Online version accessed on 2009-07-08. 35. *^ * Carl Löwig (1839), /Chemie der organischen Verbindungen/. F. Schultess, Zürich. 36. *^ * Haiyan Chen, Michel Armand, Matthieu Courty, Meng Jiang, Clare P. Grey, Franck Dolhem, Jean-Marie Tarascon, and Philippe Poizot (2009), /Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery/ J. Am. Chem. Soc., 131 (25), pp. 8984–8988 doi :10.1021/ja9024897 37. *^ * R. West, J. Niu (1969, /Non-benzenoid aromatics/. Vol. 1. Edited by J. Snyder. Academic Press New York. 38. *^ * Schleyer, P. v. R.; Najafian, K.; Kiran, B.; Jiao, H. (2000). "Are Oxocarbon Dianions Aromatic?". /J. Org. Chem./ *65* (2): 426–431. doi :10.1021/jo991267n . PMID 10813951 . 39. *^ * P. R. Hammond (1963), /1,4-Benzoquinone Tetracarboxylic Acid Dianhydride, C10O8: A Strong Acceptor/. Science, Vol. 142. no. 3591, p. 502 doi :10.1126/science.142.3591.502 40. *^ * Jürgen Sauer, Barbara Schröder, Richard Wiemer (1967), /Eine Studie der Diels-Alder-Reaktion, VI. Kinetischer Nachweis des Moleküls C6O6 (Dianhydrid der Äthylentetracarbonsäure)/. Chemische Berichte Volume 100 Issue 1, Pages 306-314 doi :10.1002/cber.19671000135 41. *^ * H. S. Verter, R. Dominic (1967), /A new carbon oxide: synthesis of hexahydroxybenzene tris oxalate/. Tetrahedron, Volume 23, Issue 10, , Pages 3863-3864 doi :doi:10.1016/S0040-4020(01)97894-9 42. *^ * H. S. Verter, H. Porter, and R. Dominic (Verter, Porter and Dominic, 1968), /A new carbon oxide: synthesis of tetrahydroxybenzoquinone bisoxalate/. Chemical Communications (London), p. 973b–974. doi :10.1039/C1968000973b 43. ^ ^/*a*/ ^/*b*/ C. Nallaiah (1984), /Synthesis of tetrahydroxy-1,4-benzoquinone biscarbonate and hexahydroxybenzene triscarbonate - new organic carbon oxides/Tetrahedron, Volume 40, Issue 23, 1984, Pages 4897-4900 doi :10.1016/S0040-4020(01)91324-9 44. ^ ^/*a*/ ^/*b*/ Yves Rubin, Carolyn B. Knobler, and Francois Diederich (1990). "Precursors to the cyclo[n]carbons: from 3,4-dialkynyl-3-cyclobutene-1,2-diones and 3,4-dialkynyl-3-cyclobutene-1,2-diols to cyclobutenodehydroannulenes and higher oxides of carbon". /J. Am. Chem. Soc./ *112* (4): 1607–1617. doi :10.1021/ja00160a047 . 45. *^ * Paolo Strazzolini, Alberto Gambi, Angelo G. Giumanini and Hrvoj Vancik (1998). "The reaction between ethanedioyl (oxalyl) dihalides and Ag2C2O4: a route to Staudinger’s elusive ethanedioic (oxalic) acid anhydride". /J. Chem. Soc., Perkin Trans./ *1*: 2553–2558. doi :10.1039/a803430c . 46. *^ * T. Hamura, Y. Ibusuki, H. Uekusa, T. Matsumoto, J. S. Siegel, K. K. Baldridge, K. Suzuki (2006). /Dodecamethoxy- and Hexaoxotricyclobutabenzene: Synthesis and Characterization./ J. Am. Chem. Soc. 128, 10032–10033. doi :10.1021/ja064063e 47. *^ * Holger Butenschön (2007). "A new oxocarbon C_12 O_6 via highly strained benzyne intermediates.". /Angew Chem Int Ed Engl/ *46* (22): 4012–4014. doi :10.1002/anie.200700926 . PMID 17508349 . 48. *^ * B. D. Kybett, G. K. Johnson, C. K. Barker, and J. L. Margrave (1965), "The Heats of Formation and Polymerization of Carbon Suboxide". J. Phys. Chem., 69 (10), 3603–3606. doi :10.1021/j100894a060 49. *^ * A. I. Katz, D. Schiferl, and R. L. Mills (1984), /New phases and chemical reactions in solid carbon monoxide under pressure./ J. Physical Chemistry, volume 88 issue 15, 3176–3179. doi :10.1021/j150659a007 50. *^ * W. J. Evans, M. J. Lipp, C.-S. Yoo, H. Cynn, J. L. Herberg, R. S. Maxwell, and M. F. Nicol (2006), /Pressure-Induced Polymerization of Carbon Monoxide: Disproportionation and Synthesis of an Energetic Lactonic Polymer./ Chemistry of Materials, vol. 18, 2520–2531. doi :10.1021/cm0524446 [show ] v • d • e *Oxocarbons* Common oxides CO_2 · CO Exotic oxides C_2 O_2 · C_3 O_2 · C_4 O_2 · C_5 O_2 · C_2 O · CO_3 · CO_4 · C_12 O_9 Compounds derived from oxides Metal carbonyls · Carbonic acid · Bicarbonates · Carbonates [show ] v • d • e Inorganic compounds of carbon Oxides and related *Oxides* (CO_2 , CO ) · Metal carbonyls · Carbonic acid · Bicarbonates · Carbonates Other ionic compounds Cyanides · Isocyanides · Cyanates · Thiocyanates · Isothiocyanates · Carbides · Fulminates · Thiofulminates Retrieved from "http://en.wikipedia.org/wiki/Oxocarbon" Categories : Oxocarbons | Carbon compounds | Oxygen compounds