http://SaturnianCosmology.Org/ mirrored file For complete access to all the files of this collection see http://SaturnianCosmology.org/search.php ========================================================== Chemical vapor deposition From Wikipedia, the free encyclopedia Jump to:navigation , search DC plasma (violet) enhances the growth of carbon nanotubes in this laboratory-scale PECVD apparatus. *Chemical vapor deposition (CVD)* is a chemical process used to produce high-purity, high-performance solid materials. The process is often used in the semiconductor industry to produce thin films . In a typical CVD process, the wafer (substrate) is exposed to one or more volatile precursors , which react and/or decompose on the substrate surface to produce the desired deposit. Frequently, volatile by-products are also produced, which are removed by gas flow through the reaction chamber. Microfabrication processes widely use CVD to deposit materials in various forms, including: monocrystalline , polycrystalline , amorphous , and epitaxial . These materials include: silicon , carbon fiber , carbon nanofibers , filaments , carbon nanotubes , SiO_2 , silicon-germanium , tungsten , silicon carbide , silicon nitride , silicon oxynitride , titanium nitride , and various high-k dielectrics . The CVD process is also used to produce synthetic diamonds . Contents [hide ] * 1 Types of chemical vapor deposition * 2 Substances commonly deposited for ICs o 2.1 Polysilicon o 2.2 Silicon dioxide o 2.3 Silicon nitride o 2.4 Metals * 3 See also * 4 References * 5 Further reading * 6 External links [edit ] Types of chemical vapor deposition Hot-wall thermal CVD (batch operation type) Plasma assisted CVD A number of forms of CVD are in wide use and are frequently referenced in the literature. These processes differ in the means by which chemical reactions are initiated (e.g., activation process) and process conditions. * Classified by operating pressure o /Atmospheric pressure CVD/ (APCVD) - CVD processes at atmospheric pressure. o /Low-pressure CVD/ (LPCVD) - CVD processes at subatmospheric pressures^[1] . Reduced pressures tend to reduce unwanted gas-phase reactions and improve film uniformity across the wafer. Most modern CVD processes are either LPCVD or UHVCVD. o /Ultrahigh vacuum CVD/ (UHVCVD) - CVD processes at a very low pressure, typically below 10^−6 Pa (~10^−8 torr ). Note that in other fields, a lower division between high and ultra-high vacuum is common, often 10^−7 Pa. * Classified by physical characteristics of vapor o /Aerosol assisted CVD/ (AACVD) - A CVD process in which the precursors are transported to the substrate by means of a liquid/gas aerosol, which can be generated ultrasonically. This technique is suitable for use with non-volatile precursors. o /Direct liquid injection CVD/ (DLICVD) - A CVD process in which the precursors are in liquid form (liquid or solid dissolved in a convenient solvent). Liquid solutions are injected in a vaporization chamber towards injectors (typically car injectors). Then the precursor vapors are transported to the substrate as in classical CVD process. This technique is suitable for use on liquid or solid precursors. High growth rates can be reached using this technique. * Plasma methods (see also Plasma processing ) o /Microwave plasma-assisted CVD/ (MPCVD) o /Plasma-Enhanced CVD / (PECVD) - CVD processes that utilize plasma to enhance chemical reaction rates of the precursors^[2] . PECVD processing allows deposition at lower temperatures, which is often critical in the manufacture of semiconductors. o /Remote plasma-enhanced CVD/ (RPECVD) - Similar to PECVD except that the wafer substrate is not directly in the plasma discharge region. Removing the wafer from the plasma region allows processing temperatures down to room temperature. * /Atomic layer CVD/ (ALCVD ) – Deposits successive layers of different substances to produce layered, crystalline films. See Atomic layer epitaxy . * /Combustion Chemical Vapor Deposition / (CCVD) - nGimat's proprietary Combustion Chemical Vapor Deposition process is an open-atmosphere, flame-based technique for depositing high-quality thin films and nanomaterials. * /Hot wire CVD/ (HWCVD) - also known as catalytic CVD (Cat-CVD) or hot filament CVD (HFCVD). Uses a hot filament to chemically decompose the source gases.^[3] * /Metalorganic chemical vapor deposition / (MOCVD) - CVD processes based on metalorganic precursors. * /Hybrid Physical-Chemical Vapor Deposition / (HPCVD) - Vapor deposition processes that involve both chemical decomposition of precursor gas and vaporization of a solid source. * /Rapid thermal CVD/ (RTCVD) - CVD processes that use heating lamps or other methods to rapidly heat the wafer substrate . Heating only the substrate rather than the gas or chamber walls helps reduce unwanted gas phase reactions that can lead to particle formation. * /Vapor phase epitaxy / (VPE) [edit ] Substances commonly deposited for ICs This section discusses the CVD processes often used for integrated circuits (ICs). Particular materials are deposited best under particular conditions. [edit ] Polysilicon Polycrystalline silicon is deposited from silane (SiH_4 ), using the following reaction: SiH_4 → Si + 2 H_2 This reaction is usually performed in LPCVD systems, with either pure silane feedstock, or a solution of silane with 70-80% nitrogen . Temperatures between 600 and 650 °C and pressures between 25 and 150 Pa yield a growth rate between 10 and 20 nm per minute. An alternative process uses a hydrogen -based solution. The hydrogen reduces the growth rate, but the temperature is raised to 850 or even 1050 °C to compensate. Polysilicon may be grown directly with doping, if gases such as phosphine , arsine or diborane are added to the CVD chamber. Diborane increases the growth rate, but arsine and phosphine decrease it. [edit ] Silicon dioxide Silicon dioxide (usually called simply "oxide" in the semiconductor industry) may be deposited by several different processes. Common source gases include silane and oxygen , dichlorosilane (SiCl_2 H_2 ) and nitrous oxide (N_2 O), or tetraethylorthosilicate (TEOS; Si(OC_2 H_5 )_4 ). The reactions are as follows: SiH_4 + O_2 → SiO_2 + 2 H_2 SiCl_2 H_2 + 2 N_2 O → SiO_2 + 2 N_2 + 2 HCl Si(OC_2 H_5 )_4 → SiO_2 + byproducts The choice of source gas depends on the thermal stability of the substrate; for instance, aluminium is sensitive to high temperature. Silane deposits between 300 and 500 °C, dichlorosilane at around 900 °C, and TEOS between 650 and 750 °C, resulting in a layer of /low- temperature oxide/ (LTO). However, silane produces a lower-quality oxide than the other methods (lower dielectric strength , for instance), and it deposits nonconformally . Any of these reactions may be used in LPCVD, but the silane reaction is also done in APCVD. CVD oxide invariably has lower quality than thermal oxide , but thermal oxidation can only be used in the earliest stages of IC manufacturing. Oxide may also be grown with impurities (alloying or "doping "). This may have two purposes. During further process steps that occur at high temperature, the impurities may diffuse from the oxide into adjacent layers (most notably silicon) and dope them. Oxides containing 5–15% impurities by mass are often used for this purpose. In addition, silicon dioxide alloyed with phosphorus pentoxide ("P-glass") can be used to smooth out uneven surfaces. P-glass softens and reflows at temperatures above 1000 °C. This process requires a phosphorus concentration of at least 6%, but concentrations above 8% can corrode aluminium. Phosphorus is deposited from phosphine gas and oxygen: 4 PH_3 + 5 O_2 → 2 P_2 O_5 + 6 H_2 Glasses containing both boron and phosphorus (borophosphosilicate glass, BPSG) undergo viscous flow at lower temperatures; around 850 °C is achievable with glasses containing around 5 weight % of both constituents, but stability in air can be difficult to achieve. Phosphorus oxide in high concentrations interacts with ambient moisture to produce phosphoric acid. Crystals of BPO_4 can also precipitate from the flowing glass on cooling; these crystals are not readily etched in the standard reactive plasmas used to pattern oxides, and will result in circuit defects in integrated circuit manufacturing. Besides these intentional impurities, CVD oxide may contain byproducts of the deposition process. TEOS produces a relatively pure oxide, whereas silane introduces hydrogen impurities, and dichlorosilane introduces chlorine . Lower temperature deposition of silicon dioxide and doped glasses from TEOS using ozone rather than oxygen has also been explored (350 to 500 °C). Ozone glasses have excellent conformality but tend to be hygroscopic – that is, they absorb water from the air due to the incorporation of silanol (Si-OH) in the glass. Infrared spectroscopy and mechanical strain as a function of temperature are valuable diagnostic tools for diagnosing such problems. [edit ] Silicon nitride Silicon nitride is often used as an insulator and chemical barrier in manufacturing ICs. The following two reactions deposit nitride from the gas phase: 3 SiH_4 + 4 NH_3 → Si_3 N_4 + 12 H_2 3 SiCl_2 H_2 + 4 NH_3 → Si_3 N_4 + 6 HCl + 6 H_2 Silicon nitride deposited by LPCVD contains up to 8% hydrogen. It also experiences strong tensile stress , which may crack films thicker than 200 nm. However, it has higher resistivity and dielectric strength than most insulators commonly available in microfabrication (10^16 Ω ·cm and 10 MV /cm, respectively). Another two reactions may be used in plasma to deposit SiNH: 2 SiH_4 + N_2 → 2 SiNH + 3 H_2 SiH_4 + NH_3 → SiNH + 3 H_2 These films have much less tensile stress, but worse electrical properties (resistivity 10^6 to 10^15 Ω·cm, and dielectric strength 1 to 5 MV/cm).^[4] [edit ] Metals Some metals (notably aluminium and copper ) are seldom or never deposited by CVD. As of 2002^[update] , a commercially, cost effective, viable CVD process for copper did not exist, though copper formate, copper(hfac)2, Cu(II) ethyl acetoacetate, and other precursors have been used. Copper deposition of the metal has been done mostly by electroplating , in order to reduce the cost. Aluminum can be deposited from tri-isobutyl aluminium (TIBAL), tri ethyl/methyl aluminum (TEA,TMA), or dimethylaluminum hydride (DMAH), but physical vapor deposition methods are usually preferred.^[/citation needed /] However, CVD processes for molybdenum , tantalum , titanium , nickel, and tungsten are widely used. These metals can form useful silicides when deposited onto silicon. Mo, Ta and Ti are deposited by LPCVD, from their pentachlorides. Nickel, molybdenum, and tungsten can be deposited at low temperatures from their carbonyl precursors. In general, for an arbitrary metal /M/, the reaction is as follows: 2 MCl_5 + 5 H_2 → 2 M + 10 HCl The usual source for tungsten is tungsten hexafluoride , which may be deposited in two ways: WF_6 → W + 3 F_2 WF_6 + 3 H_2 → W + 6 HF [edit ] See also * Atomic layer deposition , a more precise and conformal coating technology * Ion plating , a process that may use chemical vapor precursors * Physical vapor deposition , the deposition of materials from vapor without chemical reactions * Plasma-enhanced chemical vapor deposition * Combustion Chemical Vapor Deposition * Carbonyl metallurgy [edit ] References 1. *^ * /Low Pressure Chemical Vapor Deposition - Technology and Equipment/ , http://www.crystec.com/klllpcvde.htm 2. *^ * /Plasma Enhanced Chemical Vapor Deposition - Technology and Equipment/ , http://www.crystec.com/tridepe.htm 3. *^ * Schropp, R.E.I.; B. Stannowski, A.M. Brockhoff, P.A.T.T. van Veenendaal and J.K. Rath. "Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells" (PDF). /Materials Physics and Mechanics/. pp. 73–82. http://www.ipme.ru/e-journals/MPM/no_2100/schropp/schropp.pdf. 4. *^ * S.M. Sze (2008). /Semiconductor devices: physics and technology/. Wiley-India. p. 384. ISBN 812651681X . [edit ] Further reading * Jaeger, Richard C. (2002). "Film Deposition". /Introduction to Microelectronic Fabrication/. Upper Saddle River: Prentice Hall. ISBN 0-201-44494-7 . * Smith, Donald (1995). /Thin-Film Deposition: Principles and Practice/. MacGraw-Hill. * Dobkin and Zuraw (2003). /Principles of Chemical Vapor Deposition/. Kluwer. [edit ] External links * Fundamentals of Chemical Vapor Deposition , by TimeDomain CVD, Inc. * Traditional Coating Technologies [hide ] v • d • e Glass science topics Basics Glass definition *·* Is glass a liquid or a solid? *·* Glass-liquid transition *·* Physics of glass *·* Supercooling Glass formulation AgInSbTe *·* Bioglass *·* Borophosphosilicate glass *·* Borosilicate glass *·* Ceramic glaze *·* Chalcogenide glass *·* Cobalt glass *·* Cranberry glass *·* Crown glass *·* Flint glass *·* Fluorosilicate glass *·* Fused quartz *·* GeSbTe *·* Gold ruby glass *·* Lead glass *·* Milk glass *·* Phosphosilicate glass *·* Photochromic lens glass *·* Silicate glass *·* Soda-lime glass *·* Sodium hexametaphosphate *·* Soluble glass *·* Ultra low expansion glass *·* Uranium glass *·* Vitreous enamel *·* ZBLAN Glass-ceramics Bioactive glass *·* CorningWare *·* Glass-ceramic-to-metal seals *·* Macor *·* Zerodur Glass preparation Annealing *·* *Chemical vapor deposition* *·* Glass batch calculation *·* Glass forming *·* Glass melting *·* Glass modeling *·* Ion implantation *·* Liquidus temperature *·* Sol-gel technique *·* Viscosity Optics Achromat *·* Dispersion *·* Gradient index optics *·* Hydrogen darkening *·* Optical amplifier *·* Optical fiber *·* Optical lens design *·* Photochromic lens *·* Photosensitive glass *·* Refraction *·* Transparent materials Surface modification Anti-reflective coating *·* Chemically strengthened glass *·* Corrosion *·* Dealkalization *·* DNA microarray *·* Hydrogen darkening *·* Insulated glazing *·* Porous glass *·* Self-cleaning glass *·* Sol-gel technique *·* Toughened glass Diverse topics Diffusion *·* Glass-coated wire *·* Glass databases *·* Glass electrode *·* Glass fiber reinforced concrete *·* Glass history *·* Glass ionomer cement *·* Glass microspheres *·* Glass-reinforced plastic *·* Glass science institutes *·* Glass-to-metal seal *·* Porous glass *·* Prince Rupert's Drops *·* Radioactive waste vitrification *·* Windshield